PARCEL v1.04
User Guide

Lawrence C. Cowsar* Carol A. San Soucief Ivan Yotov!

May, 1996

1 Introduction

This document is provided to describe the calling sequence and to augment the internal documen-
tation of PARCEL, a parallel cell-centered finite difference elliptic equation solver. PARCEL
can be used to compute a cell-centered finite difference approximation (or equivalently, the lowest-
order Raviart-Thomas-Nedelec (RTNg) mixed finite element approximation) to linear, second-order
elliptic equations of the form,

ap—V-DVp=f inQ, (1)

with appropriate boundary conditions. The domain € is a rectangular solid region in IR®. More
general geometries can be handled via coordinate transformations; see, for example, [1,2]. The
functions «, D, f and the boundary conditions may all be spatially varying. The coefficient o must
be a nonnegative function that may be identically zero. D is a symmetric positive definite matrix,
not necessarily diagonal.

Problems in the form of (1) arise in many applications including subsurface flow (see, e.g., [9]),
electrostatics and implicit time discretizations of parabolic and hyperbolic equations in which case
« is related to the size of the time step. An instance of (1) also arises as a subproblem in the
application of the modified method of characteristics to advection-diffusion equations [5].

PARCEL solves (1) using a substructuring domain decomposition method in which the domain
Q) is partitioned into a number of non-overlapping subdomains. New unknowns are introduced
along the interface between subdomains, and a reduced problem is formulated in terms of these
new unknowns. This approach was first proposed by Glowinski and Wheeler in [7] where they refer
to this procedure as “Method 2”. The reduced interface problem is solved using a preconditioned
conjugate gradient routine. The preconditioning options implemented in PARCEL include an
approximate Jacobi preconditioned conjugate gradient method described in [4] and a state of the
art Balancing preconditioner due to Mandel described and analyzed in [8, 3].

PARCEL is a collection of several modules written in Fortran. The only valid entry point into
the PARCEL package is the subroutine Parcel3D(). In order to provide a certain level of portability
across computing platforms, PARCEL is implemented in a low-overhead communications platform
with support for the PICL, PVM, NX and CMMD communications libraries. The code was
developed on the Intel family of machines, and has been tested on a network of workstations.

*AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974-0636
tTexas institute for Computational and Applied Mathematices, University of Texas, Austin, Texas 78712

2 Discretization and Solution Algorithm

PARCEL provides a node callable Fortran subroutine Parcel3D() that computes the expanded
mixed finite element approximation to the following second order scalar elliptic equation,

u=-Vp in Q, (2)
u=Du in Q, (3)
ap+V-u=f in Q, (4)
p=q onl, (5)
u-n=y on I'". (6)

The domain 2 and each subdomain is assumed to be a rectangular solid with a tensor product grid.
' and consequently ™ are assumed to each be the union of faces of cells on the outer boundary of
Q. Furthermore, I' and ['* are not assumed to be connected regions.

PARCEL employs a cell-centered finite difference scheme equivalent to the lowest-order Raviart-
Thomas-Nedelec expanded mixed method with quadrature to discretize the equation over €2. Thus,
system unknowns are approximations to the scalar variable p at cell centers. Extra unknowns are
added along interfaces between subdomains, and the cell center unknowns are eliminated in terms
of these interface unknowns. The interface unknowns can be thought of as trace values of p at
these interface points. The resulting problem then is to solve a linear system whose solution is an
approximation to p along the interfaces between subdomains.

In [7, 4] two substructuring domain decomposition schemes appropriate for mixed finite element
discretizations were developed. In the scheme considered here, unknowns corresponding to the
common value of p along the interfaces between subdomains are introduced. These values are
adjusted iteratively using a conjugate gradient method until the values of u - n match on the
interface.

Each step of the algorithm proceeds as follows:

1. Choose values of p along subdomain interfaces.

2. Solve problems on each subdomain using the interface values above as Dirichlet boundary
data.

3. From the subdomain solutions for p, calculate values of u and check if values of u - n match
at the subdomain interfaces.

This defines the basic solution approach.

3 The Balancing Preconditioner

While the interface problem is better conditioned than the original problem over cell-center values
of p, further precondtioning may be necessary. A particularly effective preconditioner is Mandel’s
Balancing preconditioner described and analyzed in [3, 8]. In this section we give a brief overview of
the balancing preconditioner implemented in PARCEL. The reader is refered to [3, 8] for further
information.

The balancing preconditioner uses a “coarse space” which spans the null space of the interface
operator 5. This coarse space has far fewer degrees of freedom than the original problem. Denote
the coarse space as W.

The action of the balancing preconditioner Mb_a} on a vector r is computed in the following way:

1. For the first residual of the conjugate gradient procedure, find wy € W satisfying
(Swg,vy) = (r,vy), vy € W.

Set,
ool =T — Swy.

2. Find any solution to the local Neumann problems
Si\i = Tpal,,

where S; is the projection of the operator S onto the degrees of freedom associated with
subdomain 7, and ry,y, is the restriction of r44; to subdomain .

3. Assemble the)\; into a A defined over the entire interface.

4. Find Ap satisfying
(S(/\—I—/\H),UH):(T‘,UH)7 v € W.

5. Set
Mb_a}f‘ = A+ Ag.

Thus, considering both the linear system solution and the application of the preconditioner,
each preconditioned conjugate gradient iteration requires:

1. The solution of a Dirichlet problem on each subdomain arising from the substructuring domain
decomposition algorithm.

2. The solution of a Neumann problem on each subdomain arising from the balancing precon-
ditioner.

3. A coarse solve, arising from the preconditioning step, which involves communication between
processors.

Data and work for the linear system solution are distributed over the processors. For ease of
computation, we assume that each processor holds data for exactly one subdomain. The processors
then can each factor and solve the local Dirichlet and Neumann subdomain problems independently.
Direct methods are used for these solves. The coarse problem matrix is formed and factored before
the conjugate gradient iteration begins. The factorization and solves with this matrix are also done
with direct methods. Thus, the subdomain problems are all handled locally while the coarse solve
is done globally and involves some communication overhead.

4 The Parcel3D() subroutine

In this section the calling sequence of Parcel3D() is discussed. This is the only valid entry into the
PARCEL package. A call to Parcel3D() has the following form:

call parcel3D(majv,minv,
ni,n2,n3,x1,x2,x3,11,12,13,pres,vell,vel2,vel3,
alpha,D,Dtype,f,bcType_in,nBCRegions_in,bcRegionl,bcRegion2,
bcRegion3,bcl,bc2,bc3,mynbr,icube,rparam,iparam, idecomp,
SDparam,rwk,len,iwk,ilen)

P H P H

We will now describe the subroutine arguments. The arguments serve three purposes: describe
the local partial differential equation, describe the connectivity of the decomposition, and provide
tolerances and other parameters to the interface and subdomain problems.

Since PARCEL is a node—callable library, the code assumes that the global problem grid
and relevant problem information has been distributed to the nodes. Thus, all parameters to the
Parcel3D subroutine are for the SUBDOMAIN problem for the node calling the routine and not
for the GLOBAL problem.

e majv: Integer [INPUT] In an effort to make sure that the user is actually calling the release
of the package he thinks he is, the user must provide the correct major release number for
the PARCEL package. This document provides documentation for Major Release 1. Hence,
majv should be set equal to 1. A change in Major Release number may signify a major change
in the argument list of parcel3D; hence, a more current copy of the documentation should be
used. If a mismatch of Major Release number occurs, then parcel3D aborts.

e minv: Integer [INPUT] Like the Major Release number, the Minor Release number is used to
make sure that the user is calling the right version of the package. If a Minor release number
mismatch occurs, execution continues and a warning message is given. At the time of writing
this documentation the Minor Release number was 4.

The majority of parameters are concerned with the specification of the differential problem to
be solved.

e nl: Integer [INPUT] The number of cells in the first coordinate axis of the subdomain problem.
Each subdomain is rectangular with a tensor product grid.

e n2: Integer [INPUT] The number of cells in the second coordinate axis of the subdomain
problem.

e n3: Integer [INPUT] The number of cells in the third coordinate axis of the subdomain
problem.

e x1(0:nl): Real*8 Vector [INPUT] The mesh points in the first coordinate direction. It is
assumed that x1(0) < x1(nl).
[

e x2(0:n2): Real*8 Vector [INPUT] The mesh points in the second coordinate direction. It is
assumed that x2(0) < x2(n2).

(
e x3(0:n3): Real*8 Vector [INPUT] The mesh points in the third coordinate direction. It is
assumed that x3(0) < x3(n3).

e 11(n2,n3,2): Real*8 Array [INPUT/OUTPUT] On input, the guess for the inter-subdomain
multipliers (denoted A in [4]) for the faces with normals in the x1-direction. 11, 12, and 13 are
approximations to p along the interfaces of subdomains. In particular 11(*,*,1) corresponds
to the face z; = x1(0) and 11(*,*,2) to the face 21 = x1(nl). When a subdomain does not
share a face, i.e. the face is part of the outer boundary, those unknowns should be set to
zero. On output, 11 contains the converged solution for the inter-element multipliers on the
corresponding faces.

e 12(n1,n3,2): Real*8 Array [INPUT/OUTPUT] On input, the guess for the inter-subdomain
multipliers (denoted A in [4]) for the faces with normals in the x2-direction. In particular

12(*,*,1) corresponds to the face x5 = x2(0) and 12(*,*,2) to the face 25 = x2(n2). When a
subdomain does not share a face, i.e. the face is part of the outer boundary, those unknowns
should be set to zero. On output, 12 contains the converged solution for the inter-element
multipliers on the corresponding faces.

13(n1,n2,2): Real*8 Array [INPUT/OUTPUT] On input, the guess for the inter-subdomain
multipliers (denoted A in [4]) for the faces with normals in the x3-direction. In particular
13(*,*,1) corresponds to the face z3 = x3(0) and 13(*,*,2) to the face 23 = x3(n3). When a
subdomain does not share a face, i.e. the face is part of the outer boundary, those unknowns
should be set to zero. On output, I3 contains the converged solution for the inter-element
multipliers on the corresponding faces.

pres(nl,n2,n3): Real*8 Array [INPUT/OUTPUT] On input, this array holds the initial guess
for the subdomain cell centered pressures. On return, the array holds an approximation to
the pressure that solves (2)-(6). pres(il,i2,i3) is an approximation to p at the center of cell
(i1,i2,i3), i.e. at the point ((x1(il)4+x1(il-1))/2, (x2(i2)+x2(i2-1))/2, (x3(i3)+x3(i3-1))/2).

vell(0:n1,n2,n3): Real*8 Array [OUTPUT] This array holds the x1-component mixed method
velocity for this subdomain.

vel2(n1,0:n2,n3): Real*8 Array [OUTPUT] This array holds the x2-component mixed method
velocity for this subdomain.

vel3(n1,n2,0:n3): Real*8 Array [OUTPUT] This array holds the x3-component mixed method
velocity for this subdomain.

alpha(nl,n2,n3): Real*8 Array [INPUT] The lower order term « in equations (2)—(6). The
entries in alpha should be non-negative. alpha(il,i2,i3) is either the value of & at the center
of cell (i1,i2,i3), i.e. at the point ((x1(il)+x1(il-1))/2, (x2(i2)+x2(i2-1))/2, (x3(i3)+x3(i3-
1))/2), or the cell average of « on cell (il,i2,i3).

D : 7?7 [INPUT] The datum D contains information used to describe the tensor D in (3).
The most natural way to specify this information seems to be application specific. After
some debate, the specific contents of D are decided to be left unspecified. D is passed to
several routines that construct the local subdomain matrices and estimate the diagonal of
local contributions to the Schur complements. Currently the following options are supported.
D may be one of two types of vectors or it may be a function name used to calculate the
values of the tensor. If D is of the first vector type, it should be a real*8 long vector of length
((n141)*n2*n3 + nl1*(n241)*n3 + nl1*n2*(n341)) that is the concatenation of the x1, x2
and x3 edge transmissibilities. Note that in this case D is assumed to be a diagonal tensor.
If D is of the second vector type, it should be a real*8 long vector of length 6*n1*n2*n3 that
is the concatenation of the values at the cell centers for each of the 6 possible entries of D
(assuming D is a symmetric tensor). Note that in this case the ordering of the 6 entries is
Dy, Dy, D3, Dyy, D33, and Ds3. If D is a function, D is a real*8 function of the form:

real*8 function userD(i,j,i1,i2,1i3)
integer 1i,j,11,12,1i3

where userD returns the i,j-entry of the tensor D at the center of local cell (il,i2,i3).

e Dtype: Integer [INPUT] Dtype describes the type of representation of D that is used above.
If Dtype=1, then it is stored as a long vector of edge transmissibilities, if Dtype=2, then it is
a user supplied function taking arguments as described above. If Dtype=3, then it is stored
as a long vector of cell centered values. Symbolic names are defined for these types in the file

../Include/defines.h

e f(n1,n2,n3): Real*8 Array [INPUT] f is the right hand side source term f in (2)—(6). The
average value of f in the cell is a reasonable choice for its discretization.

e bcType_in(nBCRegions_in): Integer Array [INPUT] Contains the type of boundary condition
for each boundary region of the GLOBAL problem. The types are given symbolic names
in ../Include/BCtypes.h, and the values are: 1 if the region is Neumann, 2 if the region is
Dirichlet and 3 if the region is No Flow (i.e. Neumann with 0 flux).

e nBCRegions_in: Integer [INPUT] The total number of boundary condition regions for the
global problem.

e bcRegionl(n2,n3,2): Integer Array [INPUT] This array contains the boundary region number
to which each boundary cell with normal in the x1-direction belongs. The third index is 1 if
the cell has a negative outward normal and 2 if it has a positive outward normal.

e bcRegion2(n1,n3,2): Integer Array [INPUT] This array contains the boundary region number
to which each boundary cell with normal in the x2-direction belongs.

e bcRegion3(n1,n2,2): Integer Array [INPUT] This array contains the boundary region number
to which each boundary cell with normal in the x3-direction belongs.

e bcl(n2,n3,2): Real*8 Array [INPUT] This array contains the value of the subdomain bound-
ary conditions for boundary cells with normals in the xl-direction. If a face is internal,
be(*,*iface) should contain 0’s. If a face is on the outer boundary and Dirichlet data is
imposed on cell (i1,i2) of that face (indicated by bcType_in = 2), then be(il,i2,iface) should
contain the value of p at (x1(0), (x2(i2)+x2(i2-1))/2, (x3(i3)+x3(i3-1))/2) if iface is 1, and
the value of p at (x1(nl), (x2(i2)4x2(i2-1))/2, (x3(i3)4+x3(i3-1))/2) if iface is 2. For No
Flow boundary conditions bel(*,* iface) should contain 0’s. And for Neumann conditions,
bel(*,* iface) should contain the value of the VOLUMETRIC flux —DVp - n times (x2(i2)-
x2(i2-1))*(x3(i3)-x3(i3-1)) at (x1(0), (x2(i2)+x2(i2-1))/2, (x3(i3)+x3(i3-1))/2) if iface is 1,
and the same quantity at the point (x1(nl), (x2(i2)4+x2(i2-1))/2, (x3(i3)+x3(i3-1))/2) if iface
is 2. Here n is the outward normal.

e bc2(nl,n3,2): Real*8 Array [INPUT] This array contains the boundary condition values for
subdomain faces with normals in the x2-direction. See bcl for a complete description.

e bc3(nl,n2,2): Real*8 Array [INPUT] This array contains the boundary condition values for
subdomain faces with normals in the x3-direction. See bcl for a complete description.

The next few arguments are vectors that encapsulate some properties of the domain decompo-
sition or some parameters describing the iterations. They are grouped together to try to provide a
partitioning of certain aspects of the code.

e mynbr(3,2): Integer Array [INPUT] This variable describes the local connectivity of the sub-
domains. The array contains the node numbers of the neighboring nodes. Mynbr(idir,iface)

should be the node number of the neighbor sharing the face with a normal in the positive
“idir”-direction if iface=2, or negative “idir”-direction if iface =1. If a node has no neighbor
node for a given face, mynbr(idir,iface) MUST be set to -1.

e icube(3): Integer Vector [INPUT] Describes some of the “cube information”.

— [icube(1)=MYNOD] Node number.
— [icube(3)=CUBESIZE] Number of processors allocated.

e rparam(12): Real*8 Vector [INPUT/OUTPUT] Real parameters for the interface solver.

— [rparam(1)=epslF] Relative reduction required for interface problem. (INPUT)
— [rparam(2)=tollF] Absolute tolerance required to solve interface problem. (INPUT)
— [rparam(3:12)] = times(1:10) On output returns the time to execute certain internal
sections of parcel3D(). (OUTPUT)
e iparam(8): Integer Vector [INPUT/OUTPUT] Integer parameters for the interface solver.

— [iparam(1)=outUnit] Output unit number. 6 is standard output. (INPUT)

— [iparam(2)=itest] Test problem number. Not really used currently. Will be used in
output later on. (INPUT)

— [iparam(3)=iverb] Verbosity. Controls the amount of output to outUnit. iverb = 5 gives
interface progress, iverb > 15 gives subdomain solve output as well. See Table 2 for
more information about the available output. (INPUT)

— [iparam(4)=idebug] Debug level. (INPUT)
— [iparam(5)=ising] 0 if global problem is well posed, 1 if problem is singular (full Neumann
with @ = 0) with null space equal to the constant functions. (INPUT)

— [iparam(6)=PCstyle] The type of preconditioning for the interface problems. 0 is no
preconditioning, 1 and 2 are preconditioning by the value of n!Dn restricted to the
interface and 5 is Balancing preconditioning. (INPUT)

— [iparam(7)=niter]F] The maximum number of conjugate gradient iterations to perform
on the interface problem. (INPUT)

— [iparam(8)=istat] Status of the interface problem. istat < 0 indicates failure to converge.

(OUTPUT)

e idecomp(3): Integer Vector [INPUT] These parameters describe the decomposition. Since
the decompositions are thus far just tensor product rectangular, three integers suffice: ndivl,
ndiv2, ndiv3, the number of divisions of the global domain along the 3 coordinate axes.

e SDparam(5): Real*8 Vector [INPUT] These parameters are passed to the subdomain solvers.
Currently, a memory intensive “exact solver” using a Cholesky factorization of the local
stiffness matrix is used to solve the subdomain problems. Symbolic names are defined in

Include/sdsolver.h.

For the exact solver, one simply sets

— [SDparam(1)=3] for the diagonal tensor case, or

— [SDparam(1)=5] for the full tensor case.

The last arguments are the work space vectors. PARCEL allocates very little static memory.
Most of the allocations are made from the work vectors using the STACK memory utilities found
in Memory/memory.f.

rwk(len): Real*8 Vector [INPUT] Real work vector.

e len: Integer [INPUT/OUTPUT] On input, the length of the rwk work vector. On output,
the maximum length of rwk used.

o iwk(ilen): Integer Vector [INPUT] Integer work vector.

e ilen: Integer [INPUT/OUTPUT] On input, the length of the iwk work vector. On output,
the maximum length of iwk used.

5 Return Codes

Errors in PARCEL fall into two categories, catastrophic and recoverable. A catastrophic error is
an error from which computation may not proceed. A recoverable error is a state in which certain
criteria may be violated, but the calculation may proceed. For example, if a node does not have
enough memory to allocate all storage, that is a catastrophic error. If a given subdomain fails to
converge in the prescribed number of iterations, the computation may be suspect, but the iteration
on the interface problem may continue. In the event of a catastrophic error, a message is sent to
the screen and the program aborts. It may be necessary for the user to then kill and release the
cube manually (if running on a hypercube) or to reset the PVM process. This may be necessary
since some nodes may not experience a catastrophic error and those nodes would block and hang.
Recoverable errors are reported to the user, but computation continues.
Catastrophic errors result in the node on which the error occurred calling the routine:

subroutine Parcelcrash(msg,errorcode)

integer errorcode
character*(*) msg

This routine must be supplied by the user and should take appropriate action to abort the compu-
tation. The two arguments are an error code and a descriptive message concerning the error.

For most modules of PARCEL, a return code greater than or equal to zero signifies success. A
return code less than zero signifies some degree of failure. Catastrophic errors are usually reported
by a return value of less than or equal to —10.

Table 1 lists the error and return codes that may be returned.

6 Compiling and Running PARCEL

This section discusses how to compile and run the PARCEL code and test program parceltst. We
assume the source code has been installed.

After installing PARCEL, change to the ParcelDist directory. You should see the following
files and directories

Bcfdnf LOGFILE Parcel

Com Makefile Test
Doc Memory
Include Packages

The contents of the directories are:
Bcefdnf Direct Cholesky subdomain solvers for diagonal and full tensor cases.
Com Definitions of the generic communications routines for various computing platforms
Doc This documentation
Include Directory for shared include files
LOGFILE File describing changes made to the code
Makefile Makefile for PARCEL
Memory Stack memory allocation routines
Packages Routines from Blas, Linpack and Eispack
Parcel The PARCEL source code
Test Routines for a test program that uses PARCEL

A full test program and a corresponding suite of test problems is contained in the Test subdirec-
tory. The next two paragraghs discuss how to compile and execute PARCEL with this program
driving it. A rather elaborate suite of sample test problems is provided in the directory Test.

To construct an executable file using the PICLcommunication library, do the following. The
PICLcommunication libraries and a PICLusers’ guide which contains instructions on compiling
and creating these libraries can be obtained from the server netlib@ornl.gov. Once the libraries
have been installed, assign the path of the PICLnode library to the variable PICLLIB in the Test
directory Makefile. From the ParcelDist directory, type “make picl”. This command will create all
the libraries needed for PARCEL and the executable file for the test program. This executable
is called “parceltst” and will be in the Test subdirectory. There is also a shell script, written for
an Intel i860 computers, called “runit860” in the Test subdirectory. This script allocates a cube,
runs the test program and releases the cube. The script takes the size of the cube (number of
subdomains) as its argument. In order to run parceltst on the Intel i860, the number of nodes must
be a power of two or the cube will hang. For the sample input given in Appendix A, the command
“runit860 8” from the Test subdirectory will execute the test program.

Currently, PARCEL only runs with the SUN4 implementation of PVM. To construct an
executable file using the PVMcommunication library, do the following. Obtain PV Mversion 3.0 or
higher from the server netlib@ornl.gov or form some other source. Following the documentation in
the PVMusers guide [6], compile the appropriate libraries and executables necessary for the SUN4
implementation with dynamic process groups. These files include: libpvm.a, libfpvm.a, libgpvm.a,
pvings, pvim_gstat and pvimd. Assign the location of your pvm3 directory to the name PVMDIR and
specify the locations of the above three libraries by modifying the PVMLIBS variable in the Makefile
contained within the Test directory. PARCEL assumes that there is a SUN4 subdirectory within
your PVMLIBS directory, and it will look there for the above libraries. If these libraries are found
somewhere else, modify the variables LIBFPVM, LIBGPVM, and LIBPVM in the Makefile within

the Test directory to give their location. After specifying the library locations, typing “make sun4”
will make the libraries for PARCEL and the executable test program “parceltst.” In accordance
with PV Mconvention, the executable test program will be moved to the pvm3/bin /SUN4 directory.
All that remains is to put a copy of the input file into the pvm3/bin/SUN4 directory.

Also from the base directory, one can execute “make clean” to remove all the intermediate files
such as “*.0” files.

7 Some Notes on the Communication Library

PARCEL has been developed on the Intel family of machines using the PICLIlibrary to provide
communication primitives. It has subsequently been ported to a set of generic communication
routines which support the PICL, PVM, NX and CMMD communication libraries. The choice
of communication libraries is made when PARCEL is compiled. Therefore, to use PARCEL in
its present state, the user must write the driver program using the appropriate communication
library or using the general communication library supplied with PARCEL.

The rest of the section discusses the generic communication interface found in the Com directory
and modifications necessary for running PARCEL on a PVMwith architectures not currently
supported.

The files in the Com directory contain definitions of these generic routines in terms of PICL,
PVM, NX and CMMD. To add a new communications paradigm, one would just have to write
a new file containing definitions of these generic routines in terms of the new paradigm.

Currently, all libraries for PARCEL are compiled and created using recursive Makefiles. The
Makefile in the base directory sets a variable, ARCH, to either SUN4 or PICL, then switches to each
subdirectory and calls the corresponding Makefile. Each of these Makefiles sets the appropriate
compiler flags and libraries for the architecture and calls itself in order to create the library. To
add another architecture to this system, one would need to modify the base directory Makefile
to include a value of ARCH for the new architecture. The best choice is the name given in the
PVMdocumentation as that will allow for easy access to the PVMlibraries. Then, within each
Makefile in directories Befdnf, Com, Memory, Packages, Packages/linpack, Parcel and Test, labels
must be added corresponding to the new ARCH extension and specifying appropriate compiler
options.

10

Appendix A: Test Program Input file

This section describes the input file used in the test program parceltst found in the Test directory.
The input file name “input” is hard coded in the driver source code (parceltst.f). A sample
input file is contained below.

11 Test Problem Number
5 Verbosity of output
0 Debug Level
32 N1
24 N2
16 N3
4 NDIV1
2 NDIV2
1 NDIV3
5 PC Style: 0 = I, 1=Avg. 2=Har. 4=BP(0) 5=BAL
0. Robin B.C. factor
100 Maximum number of iterations to solve IF prob.
1.0e-6 Relative resid. reduction for Interface
1.0e-20 Absolute resid. for Interface
100 Max iterations in Subdomain Problem
6 Number of orthog. directions
1.0e-9 Relative tolerance for subdomains
0.0 Absolute tolerance for subdomains
3 Solver: 3 = ex. diag., 5 = ex. full
uniform File: BC regions (or ’uniform’)
6 Number of BC regions
2 BC for region 1
2 BC for region 2
3 BC for region 3
3 BC for region 4
3 BC for region 5
3 BC for region 6
<uwniform BC-----—-"-""""7---1-—"7"°--—-—»Bn--—-———
2 BC for {x1=0} edge Boundary Conditions
2 BC for {x1=1} edge 1 - Neumann,
1 BC for {x2=0} edge 2 - Dirchlet,
1 BC for {x2=1} edge 3 - No Flow
2 BC for {x3=0} edge 4 - Robin BC
2 BC for {x3=1} edge
1 Grid Type: 1 - Uniform Grid O - Nonuniform
0. x1(0)
1. x1(n1)
0. x2(0)
1. x2(n2)
0. x3(0)
1. x3(n3)

These inputs select test problem number 11, described in the routines in user.f. The output

11

level is 5 and the debug level is 0. These two parameters control the amount of output written to
the screen, cf. Table 2.

The global problem will consist of a grid that is 32x24x16, divided into 8 subdomains in a 4x2x1
configuration. Hence each subdomain will be 8x12x16.

The balancing preconditioner is used on the interface problem. Iteration on the interface prob-
lem will continue until the norm of the relative residual is reduced by 1.0e-6, the norm of the
absolute residual becomes less than 1.0e-20, or 100 iterations are completed.

The next entries in the input file specify parameters for the solution of the subdomain problems
if an iterative method is used. These options are currently not used.

The solver type is 3 indicating an exact solver for a diagonal tensor coefficient local problem.
An exact solver for the full tensor coefficient local problem is also available.

The boundary conditions are uniform, i.e. each face of the global boundary has the same
boundary condition. For this test problem the domain faces x1=0, x1=1, x3=0 and x3=1 have
Dirichlet boundary conditions specified, whereas the faces x2=0 and x2=1 have Neumann boundary
conditions specified. For uniform boundary conditions, the number of boundary condition regions
and the type for each of these regions is irrelevant. For nonuniform conditions a boundary condition
file must be specified (see Appendix B) as well as the number of regions and the type of condition
in each.

The last entries specify the grids. If the grid is chosen uniform (as in this case), only the end
points of the intervals need to be specified. For nonuniform grids, instead of z1(0) and z(nq), the
input file would contain 2 (0), z1(1), 21(2), ..., 1(n1) followed by like grids for x5 and z3.

Several variables control the amount of output the user sees. While it is useful to observe such
data to gain insight into the calculations, the user should specify the minimum amount of output
that still gives the user peace of mind. The output of data to the screen is a very time costly
procedure on most machines. Even a relatively small amount of output can double run time! Table
2 lists the additional output one obtains by increasing the verbosity variable. There are several
jumps in the verbosity values to provide room for expansion and customization.

12

Appendix B: Setting Up Boundary Conditions for the Test Pro-
gram

This section exlains conventions for setting up boundary conditions for the parceltst program. If
the boundary conditions are uniform, one boundary condition is specified for each face of the global
domain.

More generally, the outer boundary is divided into regions where each region has the same type
of boundary condition. The regions are specified in a file (with a name given in the input file) in
the following format.

n1,n2,n3 (global problem size)

c left face

((bcRegion(j,k),j = 1,n2),k = 1,n3)
c right face

((bcRegion(j,k),j = 1,n2),k = 1,n3)
¢ front face

((bcRegion(i,k),i = 1,n1),k = 1,n3)
¢ back face

((bcRegion(i,k),i = 1,n1),k = 1,n3)
¢ bottom face

((bcRegion(i,j),i = 1,n1),j = 1,n2)
c top face

((bcRegion(i,j),i = 1,n1),j = 1,n2)

end

Here, bcRegion is the array into which the values of the region numbers will be read for each
boundary cell of the global domain. For instance, the left face has n2 x n3 cell faces. The region
to which each cell belongs is specified for that face. The next face will be the right face, and so on.
The boundary condition type for each region is given in the input file.

A preprocessing program called “rdistr” contained in the Test directory must be run prior to
running parceltst. This program reads the input and the boundary condition regions files, and
creates files called innode???? (7?77 = 0000-9999 is the node number) for all processors. These
files contain the boundary condition regions data and are read in PARCEL by the processors.

13

Appendix C: Test Program Sample Output
The following is the output from a single run with the above input file.

PARCEL (Parallel Cell-Centered Elliptic Solver)
PARCEL Release V1.4
($Revision:$1.1$$ $Date: 1994/08/01 21:47:54 ¢)

Test Problem Number : 11 Verbosity: 5 Debug: 0
input nl n2 n3
32 24 16
input ndivl ndiv2 ndiv3
4 2 1
PCstyle: 5

RobinR: 0.0000000000000000E+000
Max. Interface Its. eps_if tol_if

100 0.10000000E-05 0.10000000E-19
niter northog eps_sd tol_sd
100 6 0.10000000E-08 0.00000000E+00
solverType: 3
BCs: 2 2 1 1 2

X1: 0.0000000000000000E+000 1.000000000000000
X2: 0.0000000000000000E+000 1.000000000000000
X3: 0.0000000000000000E+000 1.000000000000000
Asymmetry is: 1.9984014443252818E-015

Balance matrix is structurally singular 0

Continuing with eigen-decomposition

Setup Time: 9.884000 (secs)

Residual Time: 0.1860000 (secs)

CGIter: 0 Residual Norm: 0.105E+01 (0.240E+00)

CGIter: 1 Residual Norm: 0.336E+00 (0.320E+00)

CGIter: 2 Residual Norm: 0.936E-01 (0.892E-01)

CGIter: 3 Residual Norm: 0.231E-01 (0.220E-01)

CGIter: 4 Residual Norm: 0.582E-02 (0.555E-02)

CGIter: 5 Residual Norm: 0.117E-02 (0.111E-02)

CGIter: 6 Residual Norm: 0.260E-03 (0.247E-03)

CGIter: 7 Residual Norm: 0.526E-04 (0.501E-04)

CGIter: 8 Residual Norm: 0.601E-05 (0.572E-05)

CGIter: 9 Residual Norm: 0.375E-06 (0.357E-06)

Final: 1 1 0.105D+01 0.375D-06 0O 0 0 0O 0O 0O 0 O
Norms: 1 0.105D+01 0.375D-06 0.280D+07 0.357D-06
Soln Time: 4.153000 (secs)

12 error = 2.5847945692002616E-004
velocity 12 error = 3.1397510214526496E-003
velocity L-inf error = 1.7078651191508504E-002
Node 0 returns O Time: 15.943 14.507 9.88 8.00 4.18
Max Total Time : Iter: Condition : Status
14.50700 8 0.273554E+01 O

14

We first see an identification message giving the version number and revision date. The next
section of output just echos the reading of the input file. The next line starts output from the
node. Asymmetry refers to the degree of asymmetry in the balancing matrix. The time to build
the preconditioner and factor the local problem matrices was then reported in the Setup Time.
The Residual Time gives the time taken in putting the problem in residual form, see [4]. The next
five lines give information on the conjugate gradient iterations. The solution time for node 0 is
then given. We next see various errors of the pressure and velocity solutions. Lastly, the solution
time for the slowest node is given along with the number of conjugate gradient iterations and the
condition number of the problem.

Appendix D: Internal Distribution Notes

If you have an account on the Texas Institute for Computational and Applied Mathematics network
at the University of Texas, the best way to obtain the PARCEL code is to get in touch with Ivan
Yotov (yotov@ticam.utexas.edu). The files are controlled by the revision control system which
handles automatic updating of new versions. Your version of PARCEL will be able to take
advantage of this updating.

To install PARCEL, you will need the shell script “installparcel”. When executed from your
root directory, this script will set up the necessary structure for you to use the latest version
of PARCEL and fetch this version for you. The only thing left will be for you to compile the
appropriate version.

References

[1] T. ArRBoGAST, M. F. WHEELER, AND I. YoTov, Logically rectangular mized methods for

groundwater flow and transport on general geometry, Dept. Comp. Appl. Math. TR94-03, Rice
University, 1994.

[2] ——, Mized finite elements for elliptic problems with tensor coefficients as cell-centered finite
differences, Dept. Comp. Appl. Math. TR95-06, Rice University, Houston, TX 77251, Mar.
1995. To appear SIAM J. Numer. Anal., 1997, vol. 34.

[3] L. C. CowsAR, J. MANDEL, AND M. F. WHEELER, Balancing domain decomposition for
mized finite elements, Mathematics of Computation, 64 (1995), pp. 989-1016.

[4] L. C. CowsAR AND M. F. WHEELER, Parallel domain decomposition method for mized finite
elements for elliptic partial differential equations, in Proceedings of the Fourth International

Symposium on Domain Decomposition Methods for Partial Differential Equations, R. Glowinski
et al., eds., STAM, 1991.

[5] J. DoucLas, Jr AND T. F. RUSSELL, Numerical methods for convection-dominated diffusion
problems based on combining the method of characteristics with finite element or finite ifference

procedures, SIAM J. Numer. Anal., 19 (1982), pp. 871-885.

[6] A. GEIsT, A. BEGUELIN, J. DONGARRA, W. JiaNG, R. MANCHEK, AND V. SUNDERAM,
Pom 3.0 user’s guide and reference manual, Tech. Rep. ORNL/TM-12187, Oak Ridge National
Laboratory, Feb. 1993.

15

[7] R. GLOWINSKI AND M. F. WHEELER, Domain decomposition and mized finite element methods
Jor elliptic problems, in Proceedings of the First International Symposium on Domain Decom-
position Methods for Partial Differential Equations, R. Glowinski et al., eds., SITAM, Jan. 1987,
pp. 144-172.

[8] J. MANDEL, Balancing domain decomposition, Comm. on Applied Num. Methods, 9 (1993),
pp. 233-241.

[9] T. F. RusseLL aAND M. F. WHEELER, Finite element and finite difference methods for contin-
uous flows in porous media, in Mathematics of reservoir simulation, R. E. Ewing, ed., SIAM,
Philadelphia, 1983, ch. 11, pp. 35-106.

16

Return Code

Meaning

Solution

1

-12
-15
-16
-17
-30
-31

-32

-33

-34

-35
-36

-37
-38
-39

Convergence in the interface problem
via the absolute tolerance criteria
Convergence in the interface problem
via the relative residual criteria
Maximum number of interface iterations
exceeded

Too many conjugate gradient iterations
Nested Factorization failed

Problem too large

Not enough 1D space on a node
Memory allocation error

Not enough work space

Grids not nested

Generic error

Major Version number incorrect

Cube too large

Unknown Interface Matching Method
Balancing Preconditioner is not
positive definite

Solver type not supported

Specified more than the max. number
of boundary condition regions
Unknown boundary condition type
Error reading boundary condition types
Inconsistent boundary conditions

Results suspect

Results suspect

Results suspect

Increase inmaz or decrease
local problem size

Increase inmaz in size.h

Increase inmaz or idim3
Improper local grid refinement
To be categorized soon

Get updated documentation and
correct variable majv in call to
parcel3D()

Reset MAXCUBE in
“Include/msgtypes.h”

and recompile parcel3D()

Use other PC, use exact solves

Adjust BCRegions in size.h

TABLE 1: Return Codes

Verbosity | Output
0 Fatal error messages only
1 Run time data
5 Status message per conjugate gradient iteration
6 Eigenvalue estimate from conjugate gradients
15 Subdomain iterations

TABLE 2: Verbosity and Output

17

